Immuno-modification of enhancing stem cells targeting for myocardial repair
نویسندگان
چکیده
Despite the controversy in mechanism, rodent and clinical studies have demonstrated beneficial effects of stem/progenitor cell therapy after myocardial infarction (MI). In a rat ischaemic reperfusion MI model, we investigated the effects of immunomodification of CD 34(+) cells on heart function and myocardial conduction. Bispecific antibody (BiAb), consisting of an anti-myosin light chain antibody and anti-CD45 antibody, injected intravenously was used to direct human CD34(+) cells to injured myocardium. Results were compared to echocardiography guided intramyocardial (IM) injection of CD34(+) cells and PBS injected intravenously. Treatment was administered 2 days post MI. Echocardiography was performed at 5 weeks and 3 months which demonstrated LV dilatation prevention and fractional shortening improvement in both the BiAb and IM injection approaches, with BiAb achieving better results. Histological analyses demonstrated a decrease in infarct size and increase in arteriogenesis in both BiAb and IM injection. Electrophysiological properties were studied 5 weeks after treatments by optical mapping. Conduction velocity (CV), action potential duration (APD) and rise time were significantly altered in the MI area. The BiAb treated group demonstrated a more normalized activation pattern of conduction and normalization of CV at shorter pacing cycle lengths. The ventricular tachycardia inducibility was lowest in the BiAb treatment group. Intravenous administration of BiAb offers an effective means of stem cell delivery for myocardial repair post-acute MI. Such non-invasive approach was shown to offer a distinct advantage to more invasive direct IM delivery.
منابع مشابه
Are Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملThe Effect of Plant-derived Compounds in Targeting Cancer Stem Cells
Background Cancer stem cells (CSCs) are a small subpopulation of cancer cells with self-renewal and differentiation ability. Furthermore, CSCs are resistant to chemoradiotherapy due to their high level of detoxifying enzymes, strong DNA repair abilities, and high drug efflux capacity. Objective Therefore, CSCs are supposed to account for cancer initiation, progression, metastasis, recurrence, ...
متن کاملModification of mesenchymal stem cells for cardiac regeneration.
IMPORTANCE OF THE FIELD Mesenchymal stem cells (MSCs) have the greatest potential for use in cell-based therapy of human heart diseases, especially in myocardial infarcts. The therapeutic potential of MSCs in myocardial repair is based on the ability of MSCs to directly differentiate into cardiac tissue and on the paracrine actions of factors released from MSCs. However, the major obstacle in t...
متن کاملTherapeutic angiogenesis promotes efficacy of human umbilical cord matrix stem cell transplantation in cardiac repair
Objective(s):Although previous studies have confirmed the beneficial effects of human umbilical cord matrix stem cell (hUCM) transplantation post myocardial infarction (MI), but this stem cell resource has no potential to induce angiogenesis. In order to achieve the process of angiogenesis and cardiomyocyte regeneration, two required factors for cardiac repair agents were examined namely; hUCM ...
متن کاملStrategies for improved targeting of therapeutic cells: implications for tissue repair.
Multipotent mesenchymal stem cells (MSCs) have been suggested as a suitable cell source for cell-based treatments for diseases such as osteoarthritis due to their ability to differentiate towards chondrogenic and osteogenic lineages. MSCs can be obtained from a variety of tissue sources, are scalable for mass-production and immuno-privileged enabling their use for allogeneic cell therapy. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2015